|  | // Deflate.cs | 
|  | // ------------------------------------------------------------------ | 
|  | // | 
|  | // Copyright (c) 2009 Dino Chiesa and Microsoft Corporation. | 
|  | // All rights reserved. | 
|  | // | 
|  | // This code module is part of DotNetZip, a zipfile class library. | 
|  | // | 
|  | // ------------------------------------------------------------------ | 
|  | // | 
|  | // This code is licensed under the Microsoft Public License. | 
|  | // See the file License.txt for the license details. | 
|  | // More info on: http://dotnetzip.codeplex.com | 
|  | // | 
|  | // ------------------------------------------------------------------ | 
|  | // | 
|  | // last saved (in emacs): | 
|  | // Time-stamp: <2011-August-03 19:52:15> | 
|  | // | 
|  | // ------------------------------------------------------------------ | 
|  | // | 
|  | // This module defines logic for handling the Deflate or compression. | 
|  | // | 
|  | // This code is based on multiple sources: | 
|  | // - the original zlib v1.2.3 source, which is Copyright (C) 1995-2005 Jean-loup Gailly. | 
|  | // - the original jzlib, which is Copyright (c) 2000-2003 ymnk, JCraft,Inc. | 
|  | // | 
|  | // However, this code is significantly different from both. | 
|  | // The object model is not the same, and many of the behaviors are different. | 
|  | // | 
|  | // In keeping with the license for these other works, the copyrights for | 
|  | // jzlib and zlib are here. | 
|  | // | 
|  | // ----------------------------------------------------------------------- | 
|  | // Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved. | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are met: | 
|  | // | 
|  | // 1. Redistributions of source code must retain the above copyright notice, | 
|  | // this list of conditions and the following disclaimer. | 
|  | // | 
|  | // 2. Redistributions in binary form must reproduce the above copyright | 
|  | // notice, this list of conditions and the following disclaimer in | 
|  | // the documentation and/or other materials provided with the distribution. | 
|  | // | 
|  | // 3. The names of the authors may not be used to endorse or promote products | 
|  | // derived from this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, | 
|  | // INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND | 
|  | // FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT, | 
|  | // INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, | 
|  | // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, | 
|  | // OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | 
|  | // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | 
|  | // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, | 
|  | // EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // ----------------------------------------------------------------------- | 
|  | // | 
|  | // This program is based on zlib-1.1.3; credit to authors | 
|  | // Jean-loup Gailly(jloup@gzip.org) and Mark Adler(madler@alumni.caltech.edu) | 
|  | // and contributors of zlib. | 
|  | // | 
|  | // ----------------------------------------------------------------------- | 
|  |  | 
|  |  | 
|  | using System; | 
|  |  | 
|  | namespace OfficeOpenXml.Packaging.Ionic.Zlib | 
|  | { | 
|  |  | 
|  | internal enum BlockState | 
|  | { | 
|  | NeedMore = 0,       // block not completed, need more input or more output | 
|  | BlockDone,          // block flush performed | 
|  | FinishStarted,              // finish started, need only more output at next deflate | 
|  | FinishDone          // finish done, accept no more input or output | 
|  | } | 
|  |  | 
|  | internal enum DeflateFlavor | 
|  | { | 
|  | Store, | 
|  | Fast, | 
|  | Slow | 
|  | } | 
|  |  | 
|  | internal sealed class DeflateManager | 
|  | { | 
|  | private static readonly int MEM_LEVEL_MAX = 9; | 
|  | private static readonly int MEM_LEVEL_DEFAULT = 8; | 
|  |  | 
|  | internal delegate BlockState CompressFunc(FlushType flush); | 
|  |  | 
|  | internal class Config | 
|  | { | 
|  | // Use a faster search when the previous match is longer than this | 
|  | internal int GoodLength; // reduce lazy search above this match length | 
|  |  | 
|  | // Attempt to find a better match only when the current match is | 
|  | // strictly smaller than this value. This mechanism is used only for | 
|  | // compression levels >= 4.  For levels 1,2,3: MaxLazy is actually | 
|  | // MaxInsertLength. (See DeflateFast) | 
|  |  | 
|  | internal int MaxLazy;    // do not perform lazy search above this match length | 
|  |  | 
|  | internal int NiceLength; // quit search above this match length | 
|  |  | 
|  | // To speed up deflation, hash chains are never searched beyond this | 
|  | // length.  A higher limit improves compression ratio but degrades the speed. | 
|  |  | 
|  | internal int MaxChainLength; | 
|  |  | 
|  | internal DeflateFlavor Flavor; | 
|  |  | 
|  | private Config(int goodLength, int maxLazy, int niceLength, int maxChainLength, DeflateFlavor flavor) | 
|  | { | 
|  | this.GoodLength = goodLength; | 
|  | this.MaxLazy = maxLazy; | 
|  | this.NiceLength = niceLength; | 
|  | this.MaxChainLength = maxChainLength; | 
|  | this.Flavor = flavor; | 
|  | } | 
|  |  | 
|  | public static Config Lookup(CompressionLevel level) | 
|  | { | 
|  | return Table[(int)level]; | 
|  | } | 
|  |  | 
|  |  | 
|  | static Config() | 
|  | { | 
|  | Table = new Config[] { | 
|  | new Config(0, 0, 0, 0, DeflateFlavor.Store), | 
|  | new Config(4, 4, 8, 4, DeflateFlavor.Fast), | 
|  | new Config(4, 5, 16, 8, DeflateFlavor.Fast), | 
|  | new Config(4, 6, 32, 32, DeflateFlavor.Fast), | 
|  |  | 
|  | new Config(4, 4, 16, 16, DeflateFlavor.Slow), | 
|  | new Config(8, 16, 32, 32, DeflateFlavor.Slow), | 
|  | new Config(8, 16, 128, 128, DeflateFlavor.Slow), | 
|  | new Config(8, 32, 128, 256, DeflateFlavor.Slow), | 
|  | new Config(32, 128, 258, 1024, DeflateFlavor.Slow), | 
|  | new Config(32, 258, 258, 4096, DeflateFlavor.Slow), | 
|  | }; | 
|  | } | 
|  |  | 
|  | private static readonly Config[] Table; | 
|  | } | 
|  |  | 
|  |  | 
|  | private CompressFunc DeflateFunction; | 
|  |  | 
|  | private static readonly System.String[] _ErrorMessage = new System.String[] | 
|  | { | 
|  | "need dictionary", | 
|  | "stream end", | 
|  | "", | 
|  | "file error", | 
|  | "stream error", | 
|  | "data error", | 
|  | "insufficient memory", | 
|  | "buffer error", | 
|  | "incompatible version", | 
|  | "" | 
|  | }; | 
|  |  | 
|  | // preset dictionary flag in zlib header | 
|  | private static readonly int PRESET_DICT = 0x20; | 
|  |  | 
|  | private static readonly int INIT_STATE = 42; | 
|  | private static readonly int BUSY_STATE = 113; | 
|  | private static readonly int FINISH_STATE = 666; | 
|  |  | 
|  | // The deflate compression method | 
|  | private static readonly int Z_DEFLATED = 8; | 
|  |  | 
|  | private static readonly int STORED_BLOCK = 0; | 
|  | private static readonly int STATIC_TREES = 1; | 
|  | private static readonly int DYN_TREES = 2; | 
|  |  | 
|  | // The three kinds of block type | 
|  | private static readonly int Z_BINARY = 0; | 
|  | private static readonly int Z_ASCII = 1; | 
|  | private static readonly int Z_UNKNOWN = 2; | 
|  |  | 
|  | private static readonly int Buf_size = 8 * 2; | 
|  |  | 
|  | private static readonly int MIN_MATCH = 3; | 
|  | private static readonly int MAX_MATCH = 258; | 
|  |  | 
|  | private static readonly int MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1); | 
|  |  | 
|  | private static readonly int HEAP_SIZE = (2 * InternalConstants.L_CODES + 1); | 
|  |  | 
|  | private static readonly int END_BLOCK = 256; | 
|  |  | 
|  | internal ZlibCodec _codec; // the zlib encoder/decoder | 
|  | internal int status;       // as the name implies | 
|  | internal byte[] pending;   // output still pending - waiting to be compressed | 
|  | internal int nextPending;  // index of next pending byte to output to the stream | 
|  | internal int pendingCount; // number of bytes in the pending buffer | 
|  |  | 
|  | internal sbyte data_type;  // UNKNOWN, BINARY or ASCII | 
|  | internal int last_flush;   // value of flush param for previous deflate call | 
|  |  | 
|  | internal int w_size;       // LZ77 window size (32K by default) | 
|  | internal int w_bits;       // log2(w_size)  (8..16) | 
|  | internal int w_mask;       // w_size - 1 | 
|  |  | 
|  | //internal byte[] dictionary; | 
|  | internal byte[] window; | 
|  |  | 
|  | // Sliding window. Input bytes are read into the second half of the window, | 
|  | // and move to the first half later to keep a dictionary of at least wSize | 
|  | // bytes. With this organization, matches are limited to a distance of | 
|  | // wSize-MAX_MATCH bytes, but this ensures that IO is always | 
|  | // performed with a length multiple of the block size. | 
|  | // | 
|  | // To do: use the user input buffer as sliding window. | 
|  |  | 
|  | internal int window_size; | 
|  | // Actual size of window: 2*wSize, except when the user input buffer | 
|  | // is directly used as sliding window. | 
|  |  | 
|  | internal short[] prev; | 
|  | // Link to older string with same hash index. To limit the size of this | 
|  | // array to 64K, this link is maintained only for the last 32K strings. | 
|  | // An index in this array is thus a window index modulo 32K. | 
|  |  | 
|  | internal short[] head;  // Heads of the hash chains or NIL. | 
|  |  | 
|  | internal int ins_h;     // hash index of string to be inserted | 
|  | internal int hash_size; // number of elements in hash table | 
|  | internal int hash_bits; // log2(hash_size) | 
|  | internal int hash_mask; // hash_size-1 | 
|  |  | 
|  | // Number of bits by which ins_h must be shifted at each input | 
|  | // step. It must be such that after MIN_MATCH steps, the oldest | 
|  | // byte no longer takes part in the hash key, that is: | 
|  | // hash_shift * MIN_MATCH >= hash_bits | 
|  | internal int hash_shift; | 
|  |  | 
|  | // Window position at the beginning of the current output block. Gets | 
|  | // negative when the window is moved backwards. | 
|  |  | 
|  | internal int block_start; | 
|  |  | 
|  | Config config; | 
|  | internal int match_length;    // length of best match | 
|  | internal int prev_match;      // previous match | 
|  | internal int match_available; // set if previous match exists | 
|  | internal int strstart;        // start of string to insert into.....???? | 
|  | internal int match_start;     // start of matching string | 
|  | internal int lookahead;       // number of valid bytes ahead in window | 
|  |  | 
|  | // Length of the best match at previous step. Matches not greater than this | 
|  | // are discarded. This is used in the lazy match evaluation. | 
|  | internal int prev_length; | 
|  |  | 
|  | // Insert new strings in the hash table only if the match length is not | 
|  | // greater than this length. This saves time but degrades compression. | 
|  | // max_insert_length is used only for compression levels <= 3. | 
|  |  | 
|  | internal CompressionLevel compressionLevel; // compression level (1..9) | 
|  | internal CompressionStrategy compressionStrategy; // favor or force Huffman coding | 
|  |  | 
|  |  | 
|  | internal short[] dyn_ltree;         // literal and length tree | 
|  | internal short[] dyn_dtree;         // distance tree | 
|  | internal short[] bl_tree;           // Huffman tree for bit lengths | 
|  |  | 
|  | internal Tree treeLiterals = new Tree();  // desc for literal tree | 
|  | internal Tree treeDistances = new Tree();  // desc for distance tree | 
|  | internal Tree treeBitLengths = new Tree(); // desc for bit length tree | 
|  |  | 
|  | // number of codes at each bit length for an optimal tree | 
|  | internal short[] bl_count = new short[InternalConstants.MAX_BITS + 1]; | 
|  |  | 
|  | // heap used to build the Huffman trees | 
|  | internal int[] heap = new int[2 * InternalConstants.L_CODES + 1]; | 
|  |  | 
|  | internal int heap_len;              // number of elements in the heap | 
|  | internal int heap_max;              // element of largest frequency | 
|  |  | 
|  | // The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. | 
|  | // The same heap array is used to build all trees. | 
|  |  | 
|  | // Depth of each subtree used as tie breaker for trees of equal frequency | 
|  | internal sbyte[] depth = new sbyte[2 * InternalConstants.L_CODES + 1]; | 
|  |  | 
|  | internal int _lengthOffset;                 // index for literals or lengths | 
|  |  | 
|  |  | 
|  | // Size of match buffer for literals/lengths.  There are 4 reasons for | 
|  | // limiting lit_bufsize to 64K: | 
|  | //   - frequencies can be kept in 16 bit counters | 
|  | //   - if compression is not successful for the first block, all input | 
|  | //     data is still in the window so we can still emit a stored block even | 
|  | //     when input comes from standard input.  (This can also be done for | 
|  | //     all blocks if lit_bufsize is not greater than 32K.) | 
|  | //   - if compression is not successful for a file smaller than 64K, we can | 
|  | //     even emit a stored file instead of a stored block (saving 5 bytes). | 
|  | //     This is applicable only for zip (not gzip or zlib). | 
|  | //   - creating new Huffman trees less frequently may not provide fast | 
|  | //     adaptation to changes in the input data statistics. (Take for | 
|  | //     example a binary file with poorly compressible code followed by | 
|  | //     a highly compressible string table.) Smaller buffer sizes give | 
|  | //     fast adaptation but have of course the overhead of transmitting | 
|  | //     trees more frequently. | 
|  |  | 
|  | internal int lit_bufsize; | 
|  |  | 
|  | internal int last_lit;     // running index in l_buf | 
|  |  | 
|  | // Buffer for distances. To simplify the code, d_buf and l_buf have | 
|  | // the same number of elements. To use different lengths, an extra flag | 
|  | // array would be necessary. | 
|  |  | 
|  | internal int _distanceOffset;        // index into pending; points to distance data?? | 
|  |  | 
|  | internal int opt_len;      // bit length of current block with optimal trees | 
|  | internal int static_len;   // bit length of current block with static trees | 
|  | internal int matches;      // number of string matches in current block | 
|  | internal int last_eob_len; // bit length of EOB code for last block | 
|  |  | 
|  | // Output buffer. bits are inserted starting at the bottom (least | 
|  | // significant bits). | 
|  | internal short bi_buf; | 
|  |  | 
|  | // Number of valid bits in bi_buf.  All bits above the last valid bit | 
|  | // are always zero. | 
|  | internal int bi_valid; | 
|  |  | 
|  |  | 
|  | internal DeflateManager() | 
|  | { | 
|  | dyn_ltree = new short[HEAP_SIZE * 2]; | 
|  | dyn_dtree = new short[(2 * InternalConstants.D_CODES + 1) * 2]; // distance tree | 
|  | bl_tree = new short[(2 * InternalConstants.BL_CODES + 1) * 2]; // Huffman tree for bit lengths | 
|  | } | 
|  |  | 
|  |  | 
|  | // lm_init | 
|  | private void _InitializeLazyMatch() | 
|  | { | 
|  | window_size = 2 * w_size; | 
|  |  | 
|  | // clear the hash - workitem 9063 | 
|  | Array.Clear(head, 0, hash_size); | 
|  | //for (int i = 0; i < hash_size; i++) head[i] = 0; | 
|  |  | 
|  | config = Config.Lookup(compressionLevel); | 
|  | SetDeflater(); | 
|  |  | 
|  | strstart = 0; | 
|  | block_start = 0; | 
|  | lookahead = 0; | 
|  | match_length = prev_length = MIN_MATCH - 1; | 
|  | match_available = 0; | 
|  | ins_h = 0; | 
|  | } | 
|  |  | 
|  | // Initialize the tree data structures for a new zlib stream. | 
|  | private void _InitializeTreeData() | 
|  | { | 
|  | treeLiterals.dyn_tree = dyn_ltree; | 
|  | treeLiterals.staticTree = StaticTree.Literals; | 
|  |  | 
|  | treeDistances.dyn_tree = dyn_dtree; | 
|  | treeDistances.staticTree = StaticTree.Distances; | 
|  |  | 
|  | treeBitLengths.dyn_tree = bl_tree; | 
|  | treeBitLengths.staticTree = StaticTree.BitLengths; | 
|  |  | 
|  | bi_buf = 0; | 
|  | bi_valid = 0; | 
|  | last_eob_len = 8; // enough lookahead for inflate | 
|  |  | 
|  | // Initialize the first block of the first file: | 
|  | _InitializeBlocks(); | 
|  | } | 
|  |  | 
|  | internal void _InitializeBlocks() | 
|  | { | 
|  | // Initialize the trees. | 
|  | for (int i = 0; i < InternalConstants.L_CODES; i++) | 
|  | dyn_ltree[i * 2] = 0; | 
|  | for (int i = 0; i < InternalConstants.D_CODES; i++) | 
|  | dyn_dtree[i * 2] = 0; | 
|  | for (int i = 0; i < InternalConstants.BL_CODES; i++) | 
|  | bl_tree[i * 2] = 0; | 
|  |  | 
|  | dyn_ltree[END_BLOCK * 2] = 1; | 
|  | opt_len = static_len = 0; | 
|  | last_lit = matches = 0; | 
|  | } | 
|  |  | 
|  | // Restore the heap property by moving down the tree starting at node k, | 
|  | // exchanging a node with the smallest of its two sons if necessary, stopping | 
|  | // when the heap property is re-established (each father smaller than its | 
|  | // two sons). | 
|  | internal void pqdownheap(short[] tree, int k) | 
|  | { | 
|  | int v = heap[k]; | 
|  | int j = k << 1; // left son of k | 
|  | while (j <= heap_len) | 
|  | { | 
|  | // Set j to the smallest of the two sons: | 
|  | if (j < heap_len && _IsSmaller(tree, heap[j + 1], heap[j], depth)) | 
|  | { | 
|  | j++; | 
|  | } | 
|  | // Exit if v is smaller than both sons | 
|  | if (_IsSmaller(tree, v, heap[j], depth)) | 
|  | break; | 
|  |  | 
|  | // Exchange v with the smallest son | 
|  | heap[k] = heap[j]; k = j; | 
|  | // And continue down the tree, setting j to the left son of k | 
|  | j <<= 1; | 
|  | } | 
|  | heap[k] = v; | 
|  | } | 
|  |  | 
|  | internal static bool _IsSmaller(short[] tree, int n, int m, sbyte[] depth) | 
|  | { | 
|  | short tn2 = tree[n * 2]; | 
|  | short tm2 = tree[m * 2]; | 
|  | return (tn2 < tm2 || (tn2 == tm2 && depth[n] <= depth[m])); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Scan a literal or distance tree to determine the frequencies of the codes | 
|  | // in the bit length tree. | 
|  | internal void scan_tree(short[] tree, int max_code) | 
|  | { | 
|  | int n; // iterates over all tree elements | 
|  | int prevlen = -1; // last emitted length | 
|  | int curlen; // length of current code | 
|  | int nextlen = (int)tree[0 * 2 + 1]; // length of next code | 
|  | int count = 0; // repeat count of the current code | 
|  | int max_count = 7; // max repeat count | 
|  | int min_count = 4; // min repeat count | 
|  |  | 
|  | if (nextlen == 0) | 
|  | { | 
|  | max_count = 138; min_count = 3; | 
|  | } | 
|  | tree[(max_code + 1) * 2 + 1] = (short)0x7fff; // guard //?? | 
|  |  | 
|  | for (n = 0; n <= max_code; n++) | 
|  | { | 
|  | curlen = nextlen; nextlen = (int)tree[(n + 1) * 2 + 1]; | 
|  | if (++count < max_count && curlen == nextlen) | 
|  | { | 
|  | continue; | 
|  | } | 
|  | else if (count < min_count) | 
|  | { | 
|  | bl_tree[curlen * 2] = (short)(bl_tree[curlen * 2] + count); | 
|  | } | 
|  | else if (curlen != 0) | 
|  | { | 
|  | if (curlen != prevlen) | 
|  | bl_tree[curlen * 2]++; | 
|  | bl_tree[InternalConstants.REP_3_6 * 2]++; | 
|  | } | 
|  | else if (count <= 10) | 
|  | { | 
|  | bl_tree[InternalConstants.REPZ_3_10 * 2]++; | 
|  | } | 
|  | else | 
|  | { | 
|  | bl_tree[InternalConstants.REPZ_11_138 * 2]++; | 
|  | } | 
|  | count = 0; prevlen = curlen; | 
|  | if (nextlen == 0) | 
|  | { | 
|  | max_count = 138; min_count = 3; | 
|  | } | 
|  | else if (curlen == nextlen) | 
|  | { | 
|  | max_count = 6; min_count = 3; | 
|  | } | 
|  | else | 
|  | { | 
|  | max_count = 7; min_count = 4; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Construct the Huffman tree for the bit lengths and return the index in | 
|  | // bl_order of the last bit length code to send. | 
|  | internal int build_bl_tree() | 
|  | { | 
|  | int max_blindex; // index of last bit length code of non zero freq | 
|  |  | 
|  | // Determine the bit length frequencies for literal and distance trees | 
|  | scan_tree(dyn_ltree, treeLiterals.max_code); | 
|  | scan_tree(dyn_dtree, treeDistances.max_code); | 
|  |  | 
|  | // Build the bit length tree: | 
|  | treeBitLengths.build_tree(this); | 
|  | // opt_len now includes the length of the tree representations, except | 
|  | // the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | 
|  |  | 
|  | // Determine the number of bit length codes to send. The pkzip format | 
|  | // requires that at least 4 bit length codes be sent. (appnote.txt says | 
|  | // 3 but the actual value used is 4.) | 
|  | for (max_blindex = InternalConstants.BL_CODES - 1; max_blindex >= 3; max_blindex--) | 
|  | { | 
|  | if (bl_tree[Tree.bl_order[max_blindex] * 2 + 1] != 0) | 
|  | break; | 
|  | } | 
|  | // Update opt_len to include the bit length tree and counts | 
|  | opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4; | 
|  |  | 
|  | return max_blindex; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Send the header for a block using dynamic Huffman trees: the counts, the | 
|  | // lengths of the bit length codes, the literal tree and the distance tree. | 
|  | // IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | 
|  | internal void send_all_trees(int lcodes, int dcodes, int blcodes) | 
|  | { | 
|  | int rank; // index in bl_order | 
|  |  | 
|  | send_bits(lcodes - 257, 5); // not +255 as stated in appnote.txt | 
|  | send_bits(dcodes - 1, 5); | 
|  | send_bits(blcodes - 4, 4); // not -3 as stated in appnote.txt | 
|  | for (rank = 0; rank < blcodes; rank++) | 
|  | { | 
|  | send_bits(bl_tree[Tree.bl_order[rank] * 2 + 1], 3); | 
|  | } | 
|  | send_tree(dyn_ltree, lcodes - 1); // literal tree | 
|  | send_tree(dyn_dtree, dcodes - 1); // distance tree | 
|  | } | 
|  |  | 
|  | // Send a literal or distance tree in compressed form, using the codes in | 
|  | // bl_tree. | 
|  | internal void send_tree(short[] tree, int max_code) | 
|  | { | 
|  | int n;                           // iterates over all tree elements | 
|  | int prevlen   = -1;              // last emitted length | 
|  | int curlen;                      // length of current code | 
|  | int nextlen   = tree[0 * 2 + 1]; // length of next code | 
|  | int count     = 0;               // repeat count of the current code | 
|  | int max_count = 7;               // max repeat count | 
|  | int min_count = 4;               // min repeat count | 
|  |  | 
|  | if (nextlen == 0) | 
|  | { | 
|  | max_count = 138; min_count = 3; | 
|  | } | 
|  |  | 
|  | for (n = 0; n <= max_code; n++) | 
|  | { | 
|  | curlen = nextlen; nextlen = tree[(n + 1) * 2 + 1]; | 
|  | if (++count < max_count && curlen == nextlen) | 
|  | { | 
|  | continue; | 
|  | } | 
|  | else if (count < min_count) | 
|  | { | 
|  | do | 
|  | { | 
|  | send_code(curlen, bl_tree); | 
|  | } | 
|  | while (--count != 0); | 
|  | } | 
|  | else if (curlen != 0) | 
|  | { | 
|  | if (curlen != prevlen) | 
|  | { | 
|  | send_code(curlen, bl_tree); count--; | 
|  | } | 
|  | send_code(InternalConstants.REP_3_6, bl_tree); | 
|  | send_bits(count - 3, 2); | 
|  | } | 
|  | else if (count <= 10) | 
|  | { | 
|  | send_code(InternalConstants.REPZ_3_10, bl_tree); | 
|  | send_bits(count - 3, 3); | 
|  | } | 
|  | else | 
|  | { | 
|  | send_code(InternalConstants.REPZ_11_138, bl_tree); | 
|  | send_bits(count - 11, 7); | 
|  | } | 
|  | count = 0; prevlen = curlen; | 
|  | if (nextlen == 0) | 
|  | { | 
|  | max_count = 138; min_count = 3; | 
|  | } | 
|  | else if (curlen == nextlen) | 
|  | { | 
|  | max_count = 6; min_count = 3; | 
|  | } | 
|  | else | 
|  | { | 
|  | max_count = 7; min_count = 4; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Output a block of bytes on the stream. | 
|  | // IN assertion: there is enough room in pending_buf. | 
|  | private void put_bytes(byte[] p, int start, int len) | 
|  | { | 
|  | Array.Copy(p, start, pending, pendingCount, len); | 
|  | pendingCount += len; | 
|  | } | 
|  |  | 
|  | #if NOTNEEDED | 
|  | private void put_byte(byte c) | 
|  | { | 
|  | pending[pendingCount++] = c; | 
|  | } | 
|  | internal void put_short(int b) | 
|  | { | 
|  | unchecked | 
|  | { | 
|  | pending[pendingCount++] = (byte)b; | 
|  | pending[pendingCount++] = (byte)(b >> 8); | 
|  | } | 
|  | } | 
|  | internal void putShortMSB(int b) | 
|  | { | 
|  | unchecked | 
|  | { | 
|  | pending[pendingCount++] = (byte)(b >> 8); | 
|  | pending[pendingCount++] = (byte)b; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | internal void send_code(int c, short[] tree) | 
|  | { | 
|  | int c2 = c * 2; | 
|  | send_bits((tree[c2] & 0xffff), (tree[c2 + 1] & 0xffff)); | 
|  | } | 
|  |  | 
|  | internal void send_bits(int value, int length) | 
|  | { | 
|  | int len = length; | 
|  | unchecked | 
|  | { | 
|  | if (bi_valid > (int)Buf_size - len) | 
|  | { | 
|  | //int val = value; | 
|  | //      bi_buf |= (val << bi_valid); | 
|  |  | 
|  | bi_buf |= (short)((value << bi_valid) & 0xffff); | 
|  | //put_short(bi_buf); | 
|  | pending[pendingCount++] = (byte)bi_buf; | 
|  | pending[pendingCount++] = (byte)(bi_buf >> 8); | 
|  |  | 
|  |  | 
|  | bi_buf = (short)((uint)value >> (Buf_size - bi_valid)); | 
|  | bi_valid += len - Buf_size; | 
|  | } | 
|  | else | 
|  | { | 
|  | //      bi_buf |= (value) << bi_valid; | 
|  | bi_buf |= (short)((value << bi_valid) & 0xffff); | 
|  | bi_valid += len; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Send one empty static block to give enough lookahead for inflate. | 
|  | // This takes 10 bits, of which 7 may remain in the bit buffer. | 
|  | // The current inflate code requires 9 bits of lookahead. If the | 
|  | // last two codes for the previous block (real code plus EOB) were coded | 
|  | // on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode | 
|  | // the last real code. In this case we send two empty static blocks instead | 
|  | // of one. (There are no problems if the previous block is stored or fixed.) | 
|  | // To simplify the code, we assume the worst case of last real code encoded | 
|  | // on one bit only. | 
|  | internal void _tr_align() | 
|  | { | 
|  | send_bits(STATIC_TREES << 1, 3); | 
|  | send_code(END_BLOCK, StaticTree.lengthAndLiteralsTreeCodes); | 
|  |  | 
|  | bi_flush(); | 
|  |  | 
|  | // Of the 10 bits for the empty block, we have already sent | 
|  | // (10 - bi_valid) bits. The lookahead for the last real code (before | 
|  | // the EOB of the previous block) was thus at least one plus the length | 
|  | // of the EOB plus what we have just sent of the empty static block. | 
|  | if (1 + last_eob_len + 10 - bi_valid < 9) | 
|  | { | 
|  | send_bits(STATIC_TREES << 1, 3); | 
|  | send_code(END_BLOCK, StaticTree.lengthAndLiteralsTreeCodes); | 
|  | bi_flush(); | 
|  | } | 
|  | last_eob_len = 7; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Save the match info and tally the frequency counts. Return true if | 
|  | // the current block must be flushed. | 
|  | internal bool _tr_tally(int dist, int lc) | 
|  | { | 
|  | pending[_distanceOffset + last_lit * 2] = unchecked((byte) ( (uint)dist >> 8 ) ); | 
|  | pending[_distanceOffset + last_lit * 2 + 1] = unchecked((byte)dist); | 
|  | pending[_lengthOffset + last_lit] = unchecked((byte)lc); | 
|  | last_lit++; | 
|  |  | 
|  | if (dist == 0) | 
|  | { | 
|  | // lc is the unmatched char | 
|  | dyn_ltree[lc * 2]++; | 
|  | } | 
|  | else | 
|  | { | 
|  | matches++; | 
|  | // Here, lc is the match length - MIN_MATCH | 
|  | dist--; // dist = match distance - 1 | 
|  | dyn_ltree[(Tree.LengthCode[lc] + InternalConstants.LITERALS + 1) * 2]++; | 
|  | dyn_dtree[Tree.DistanceCode(dist) * 2]++; | 
|  | } | 
|  |  | 
|  | if ((last_lit & 0x1fff) == 0 && (int)compressionLevel > 2) | 
|  | { | 
|  | // Compute an upper bound for the compressed length | 
|  | int out_length = last_lit << 3; | 
|  | int in_length = strstart - block_start; | 
|  | int dcode; | 
|  | for (dcode = 0; dcode < InternalConstants.D_CODES; dcode++) | 
|  | { | 
|  | out_length = (int)(out_length + (int)dyn_dtree[dcode * 2] * (5L + Tree.ExtraDistanceBits[dcode])); | 
|  | } | 
|  | out_length >>= 3; | 
|  | if ((matches < (last_lit / 2)) && out_length < in_length / 2) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return (last_lit == lit_bufsize - 1) || (last_lit == lit_bufsize); | 
|  | // dinoch - wraparound? | 
|  | // We avoid equality with lit_bufsize because of wraparound at 64K | 
|  | // on 16 bit machines and because stored blocks are restricted to | 
|  | // 64K-1 bytes. | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | // Send the block data compressed using the given Huffman trees | 
|  | internal void send_compressed_block(short[] ltree, short[] dtree) | 
|  | { | 
|  | int distance; // distance of matched string | 
|  | int lc;       // match length or unmatched char (if dist == 0) | 
|  | int lx = 0;   // running index in l_buf | 
|  | int code;     // the code to send | 
|  | int extra;    // number of extra bits to send | 
|  |  | 
|  | if (last_lit != 0) | 
|  | { | 
|  | do | 
|  | { | 
|  | int ix = _distanceOffset + lx * 2; | 
|  | distance = ((pending[ix] << 8) & 0xff00) | | 
|  | (pending[ix + 1] & 0xff); | 
|  | lc = (pending[_lengthOffset + lx]) & 0xff; | 
|  | lx++; | 
|  |  | 
|  | if (distance == 0) | 
|  | { | 
|  | send_code(lc, ltree); // send a literal byte | 
|  | } | 
|  | else | 
|  | { | 
|  | // literal or match pair | 
|  | // Here, lc is the match length - MIN_MATCH | 
|  | code = Tree.LengthCode[lc]; | 
|  |  | 
|  | // send the length code | 
|  | send_code(code + InternalConstants.LITERALS + 1, ltree); | 
|  | extra = Tree.ExtraLengthBits[code]; | 
|  | if (extra != 0) | 
|  | { | 
|  | // send the extra length bits | 
|  | lc -= Tree.LengthBase[code]; | 
|  | send_bits(lc, extra); | 
|  | } | 
|  | distance--; // dist is now the match distance - 1 | 
|  | code = Tree.DistanceCode(distance); | 
|  |  | 
|  | // send the distance code | 
|  | send_code(code, dtree); | 
|  |  | 
|  | extra = Tree.ExtraDistanceBits[code]; | 
|  | if (extra != 0) | 
|  | { | 
|  | // send the extra distance bits | 
|  | distance -= Tree.DistanceBase[code]; | 
|  | send_bits(distance, extra); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that the overlay between pending and d_buf+l_buf is ok: | 
|  | } | 
|  | while (lx < last_lit); | 
|  | } | 
|  |  | 
|  | send_code(END_BLOCK, ltree); | 
|  | last_eob_len = ltree[END_BLOCK * 2 + 1]; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | // Set the data type to ASCII or BINARY, using a crude approximation: | 
|  | // binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. | 
|  | // IN assertion: the fields freq of dyn_ltree are set and the total of all | 
|  | // frequencies does not exceed 64K (to fit in an int on 16 bit machines). | 
|  | internal void set_data_type() | 
|  | { | 
|  | int n = 0; | 
|  | int ascii_freq = 0; | 
|  | int bin_freq = 0; | 
|  | while (n < 7) | 
|  | { | 
|  | bin_freq += dyn_ltree[n * 2]; n++; | 
|  | } | 
|  | while (n < 128) | 
|  | { | 
|  | ascii_freq += dyn_ltree[n * 2]; n++; | 
|  | } | 
|  | while (n < InternalConstants.LITERALS) | 
|  | { | 
|  | bin_freq += dyn_ltree[n * 2]; n++; | 
|  | } | 
|  | data_type = (sbyte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | // Flush the bit buffer, keeping at most 7 bits in it. | 
|  | internal void bi_flush() | 
|  | { | 
|  | if (bi_valid == 16) | 
|  | { | 
|  | pending[pendingCount++] = (byte)bi_buf; | 
|  | pending[pendingCount++] = (byte)(bi_buf >> 8); | 
|  | bi_buf = 0; | 
|  | bi_valid = 0; | 
|  | } | 
|  | else if (bi_valid >= 8) | 
|  | { | 
|  | //put_byte((byte)bi_buf); | 
|  | pending[pendingCount++] = (byte)bi_buf; | 
|  | bi_buf >>= 8; | 
|  | bi_valid -= 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Flush the bit buffer and align the output on a byte boundary | 
|  | internal void bi_windup() | 
|  | { | 
|  | if (bi_valid > 8) | 
|  | { | 
|  | pending[pendingCount++] = (byte)bi_buf; | 
|  | pending[pendingCount++] = (byte)(bi_buf >> 8); | 
|  | } | 
|  | else if (bi_valid > 0) | 
|  | { | 
|  | //put_byte((byte)bi_buf); | 
|  | pending[pendingCount++] = (byte)bi_buf; | 
|  | } | 
|  | bi_buf = 0; | 
|  | bi_valid = 0; | 
|  | } | 
|  |  | 
|  | // Copy a stored block, storing first the length and its | 
|  | // one's complement if requested. | 
|  | internal void copy_block(int buf, int len, bool header) | 
|  | { | 
|  | bi_windup(); // align on byte boundary | 
|  | last_eob_len = 8; // enough lookahead for inflate | 
|  |  | 
|  | if (header) | 
|  | unchecked | 
|  | { | 
|  | //put_short((short)len); | 
|  | pending[pendingCount++] = (byte)len; | 
|  | pending[pendingCount++] = (byte)(len >> 8); | 
|  | //put_short((short)~len); | 
|  | pending[pendingCount++] = (byte)~len; | 
|  | pending[pendingCount++] = (byte)(~len >> 8); | 
|  | } | 
|  |  | 
|  | put_bytes(window, buf, len); | 
|  | } | 
|  |  | 
|  | internal void flush_block_only(bool eof) | 
|  | { | 
|  | _tr_flush_block(block_start >= 0 ? block_start : -1, strstart - block_start, eof); | 
|  | block_start = strstart; | 
|  | _codec.flush_pending(); | 
|  | } | 
|  |  | 
|  | // Copy without compression as much as possible from the input stream, return | 
|  | // the current block state. | 
|  | // This function does not insert new strings in the dictionary since | 
|  | // uncompressible data is probably not useful. This function is used | 
|  | // only for the level=0 compression option. | 
|  | // NOTE: this function should be optimized to avoid extra copying from | 
|  | // window to pending_buf. | 
|  | internal BlockState DeflateNone(FlushType flush) | 
|  | { | 
|  | // Stored blocks are limited to 0xffff bytes, pending is limited | 
|  | // to pending_buf_size, and each stored block has a 5 byte header: | 
|  |  | 
|  | int max_block_size = 0xffff; | 
|  | int max_start; | 
|  |  | 
|  | if (max_block_size > pending.Length - 5) | 
|  | { | 
|  | max_block_size = pending.Length - 5; | 
|  | } | 
|  |  | 
|  | // Copy as much as possible from input to output: | 
|  | while (true) | 
|  | { | 
|  | // Fill the window as much as possible: | 
|  | if (lookahead <= 1) | 
|  | { | 
|  | _fillWindow(); | 
|  | if (lookahead == 0 && flush == FlushType.None) | 
|  | return BlockState.NeedMore; | 
|  | if (lookahead == 0) | 
|  | break; // flush the current block | 
|  | } | 
|  |  | 
|  | strstart += lookahead; | 
|  | lookahead = 0; | 
|  |  | 
|  | // Emit a stored block if pending will be full: | 
|  | max_start = block_start + max_block_size; | 
|  | if (strstart == 0 || strstart >= max_start) | 
|  | { | 
|  | // strstart == 0 is possible when wraparound on 16-bit machine | 
|  | lookahead = (int)(strstart - max_start); | 
|  | strstart = (int)max_start; | 
|  |  | 
|  | flush_block_only(false); | 
|  | if (_codec.AvailableBytesOut == 0) | 
|  | return BlockState.NeedMore; | 
|  | } | 
|  |  | 
|  | // Flush if we may have to slide, otherwise block_start may become | 
|  | // negative and the data will be gone: | 
|  | if (strstart - block_start >= w_size - MIN_LOOKAHEAD) | 
|  | { | 
|  | flush_block_only(false); | 
|  | if (_codec.AvailableBytesOut == 0) | 
|  | return BlockState.NeedMore; | 
|  | } | 
|  | } | 
|  |  | 
|  | flush_block_only(flush == FlushType.Finish); | 
|  | if (_codec.AvailableBytesOut == 0) | 
|  | return (flush == FlushType.Finish) ? BlockState.FinishStarted : BlockState.NeedMore; | 
|  |  | 
|  | return flush == FlushType.Finish ? BlockState.FinishDone : BlockState.BlockDone; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Send a stored block | 
|  | internal void _tr_stored_block(int buf, int stored_len, bool eof) | 
|  | { | 
|  | send_bits((STORED_BLOCK << 1) + (eof ? 1 : 0), 3); // send block type | 
|  | copy_block(buf, stored_len, true); // with header | 
|  | } | 
|  |  | 
|  | // Determine the best encoding for the current block: dynamic trees, static | 
|  | // trees or store, and output the encoded block to the zip file. | 
|  | internal void _tr_flush_block(int buf, int stored_len, bool eof) | 
|  | { | 
|  | int opt_lenb, static_lenb; // opt_len and static_len in bytes | 
|  | int max_blindex = 0; // index of last bit length code of non zero freq | 
|  |  | 
|  | // Build the Huffman trees unless a stored block is forced | 
|  | if (compressionLevel > 0) | 
|  | { | 
|  | // Check if the file is ascii or binary | 
|  | if (data_type == Z_UNKNOWN) | 
|  | set_data_type(); | 
|  |  | 
|  | // Construct the literal and distance trees | 
|  | treeLiterals.build_tree(this); | 
|  |  | 
|  | treeDistances.build_tree(this); | 
|  |  | 
|  | // At this point, opt_len and static_len are the total bit lengths of | 
|  | // the compressed block data, excluding the tree representations. | 
|  |  | 
|  | // Build the bit length tree for the above two trees, and get the index | 
|  | // in bl_order of the last bit length code to send. | 
|  | max_blindex = build_bl_tree(); | 
|  |  | 
|  | // Determine the best encoding. Compute first the block length in bytes | 
|  | opt_lenb = (opt_len + 3 + 7) >> 3; | 
|  | static_lenb = (static_len + 3 + 7) >> 3; | 
|  |  | 
|  | if (static_lenb <= opt_lenb) | 
|  | opt_lenb = static_lenb; | 
|  | } | 
|  | else | 
|  | { | 
|  | opt_lenb = static_lenb = stored_len + 5; // force a stored block | 
|  | } | 
|  |  | 
|  | if (stored_len + 4 <= opt_lenb && buf != -1) | 
|  | { | 
|  | // 4: two words for the lengths | 
|  | // The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | 
|  | // Otherwise we can't have processed more than WSIZE input bytes since | 
|  | // the last block flush, because compression would have been | 
|  | // successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | 
|  | // transform a block into a stored block. | 
|  | _tr_stored_block(buf, stored_len, eof); | 
|  | } | 
|  | else if (static_lenb == opt_lenb) | 
|  | { | 
|  | send_bits((STATIC_TREES << 1) + (eof ? 1 : 0), 3); | 
|  | send_compressed_block(StaticTree.lengthAndLiteralsTreeCodes, StaticTree.distTreeCodes); | 
|  | } | 
|  | else | 
|  | { | 
|  | send_bits((DYN_TREES << 1) + (eof ? 1 : 0), 3); | 
|  | send_all_trees(treeLiterals.max_code + 1, treeDistances.max_code + 1, max_blindex + 1); | 
|  | send_compressed_block(dyn_ltree, dyn_dtree); | 
|  | } | 
|  |  | 
|  | // The above check is made mod 2^32, for files larger than 512 MB | 
|  | // and uLong implemented on 32 bits. | 
|  |  | 
|  | _InitializeBlocks(); | 
|  |  | 
|  | if (eof) | 
|  | { | 
|  | bi_windup(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fill the window when the lookahead becomes insufficient. | 
|  | // Updates strstart and lookahead. | 
|  | // | 
|  | // IN assertion: lookahead < MIN_LOOKAHEAD | 
|  | // OUT assertions: strstart <= window_size-MIN_LOOKAHEAD | 
|  | //    At least one byte has been read, or avail_in == 0; reads are | 
|  | //    performed for at least two bytes (required for the zip translate_eol | 
|  | //    option -- not supported here). | 
|  | private void _fillWindow() | 
|  | { | 
|  | int n, m; | 
|  | int p; | 
|  | int more; // Amount of free space at the end of the window. | 
|  |  | 
|  | do | 
|  | { | 
|  | more = (window_size - lookahead - strstart); | 
|  |  | 
|  | // Deal with !@#$% 64K limit: | 
|  | if (more == 0 && strstart == 0 && lookahead == 0) | 
|  | { | 
|  | more = w_size; | 
|  | } | 
|  | else if (more == -1) | 
|  | { | 
|  | // Very unlikely, but possible on 16 bit machine if strstart == 0 | 
|  | // and lookahead == 1 (input done one byte at time) | 
|  | more--; | 
|  |  | 
|  | // If the window is almost full and there is insufficient lookahead, | 
|  | // move the upper half to the lower one to make room in the upper half. | 
|  | } | 
|  | else if (strstart >= w_size + w_size - MIN_LOOKAHEAD) | 
|  | { | 
|  | Array.Copy(window, w_size, window, 0, w_size); | 
|  | match_start -= w_size; | 
|  | strstart -= w_size; // we now have strstart >= MAX_DIST | 
|  | block_start -= w_size; | 
|  |  | 
|  | // Slide the hash table (could be avoided with 32 bit values | 
|  | // at the expense of memory usage). We slide even when level == 0 | 
|  | // to keep the hash table consistent if we switch back to level > 0 | 
|  | // later. (Using level 0 permanently is not an optimal usage of | 
|  | // zlib, so we don't care about this pathological case.) | 
|  |  | 
|  | n = hash_size; | 
|  | p = n; | 
|  | do | 
|  | { | 
|  | m = (head[--p] & 0xffff); | 
|  | head[p] = (short)((m >= w_size) ? (m - w_size) : 0); | 
|  | } | 
|  | while (--n != 0); | 
|  |  | 
|  | n = w_size; | 
|  | p = n; | 
|  | do | 
|  | { | 
|  | m = (prev[--p] & 0xffff); | 
|  | prev[p] = (short)((m >= w_size) ? (m - w_size) : 0); | 
|  | // If n is not on any hash chain, prev[n] is garbage but | 
|  | // its value will never be used. | 
|  | } | 
|  | while (--n != 0); | 
|  | more += w_size; | 
|  | } | 
|  |  | 
|  | if (_codec.AvailableBytesIn == 0) | 
|  | return; | 
|  |  | 
|  | // If there was no sliding: | 
|  | //    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && | 
|  | //    more == window_size - lookahead - strstart | 
|  | // => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) | 
|  | // => more >= window_size - 2*WSIZE + 2 | 
|  | // In the BIG_MEM or MMAP case (not yet supported), | 
|  | //   window_size == input_size + MIN_LOOKAHEAD  && | 
|  | //   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. | 
|  | // Otherwise, window_size == 2*WSIZE so more >= 2. | 
|  | // If there was sliding, more >= WSIZE. So in all cases, more >= 2. | 
|  |  | 
|  | n = _codec.read_buf(window, strstart + lookahead, more); | 
|  | lookahead += n; | 
|  |  | 
|  | // Initialize the hash value now that we have some input: | 
|  | if (lookahead >= MIN_MATCH) | 
|  | { | 
|  | ins_h = window[strstart] & 0xff; | 
|  | ins_h = (((ins_h) << hash_shift) ^ (window[strstart + 1] & 0xff)) & hash_mask; | 
|  | } | 
|  | // If the whole input has less than MIN_MATCH bytes, ins_h is garbage, | 
|  | // but this is not important since only literal bytes will be emitted. | 
|  | } | 
|  | while (lookahead < MIN_LOOKAHEAD && _codec.AvailableBytesIn != 0); | 
|  | } | 
|  |  | 
|  | // Compress as much as possible from the input stream, return the current | 
|  | // block state. | 
|  | // This function does not perform lazy evaluation of matches and inserts | 
|  | // new strings in the dictionary only for unmatched strings or for short | 
|  | // matches. It is used only for the fast compression options. | 
|  | internal BlockState DeflateFast(FlushType flush) | 
|  | { | 
|  | //    short hash_head = 0; // head of the hash chain | 
|  | int hash_head = 0; // head of the hash chain | 
|  | bool bflush; // set if current block must be flushed | 
|  |  | 
|  | while (true) | 
|  | { | 
|  | // Make sure that we always have enough lookahead, except | 
|  | // at the end of the input file. We need MAX_MATCH bytes | 
|  | // for the next match, plus MIN_MATCH bytes to insert the | 
|  | // string following the next match. | 
|  | if (lookahead < MIN_LOOKAHEAD) | 
|  | { | 
|  | _fillWindow(); | 
|  | if (lookahead < MIN_LOOKAHEAD && flush == FlushType.None) | 
|  | { | 
|  | return BlockState.NeedMore; | 
|  | } | 
|  | if (lookahead == 0) | 
|  | break; // flush the current block | 
|  | } | 
|  |  | 
|  | // Insert the string window[strstart .. strstart+2] in the | 
|  | // dictionary, and set hash_head to the head of the hash chain: | 
|  | if (lookahead >= MIN_MATCH) | 
|  | { | 
|  | ins_h = (((ins_h) << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask; | 
|  |  | 
|  | //  prev[strstart&w_mask]=hash_head=head[ins_h]; | 
|  | hash_head = (head[ins_h] & 0xffff); | 
|  | prev[strstart & w_mask] = head[ins_h]; | 
|  | head[ins_h] = unchecked((short)strstart); | 
|  | } | 
|  |  | 
|  | // Find the longest match, discarding those <= prev_length. | 
|  | // At this point we have always match_length < MIN_MATCH | 
|  |  | 
|  | if (hash_head != 0L && ((strstart - hash_head) & 0xffff) <= w_size - MIN_LOOKAHEAD) | 
|  | { | 
|  | // To simplify the code, we prevent matches with the string | 
|  | // of window index 0 (in particular we have to avoid a match | 
|  | // of the string with itself at the start of the input file). | 
|  | if (compressionStrategy != CompressionStrategy.HuffmanOnly) | 
|  | { | 
|  | match_length = longest_match(hash_head); | 
|  | } | 
|  | // longest_match() sets match_start | 
|  | } | 
|  | if (match_length >= MIN_MATCH) | 
|  | { | 
|  | //        check_match(strstart, match_start, match_length); | 
|  |  | 
|  | bflush = _tr_tally(strstart - match_start, match_length - MIN_MATCH); | 
|  |  | 
|  | lookahead -= match_length; | 
|  |  | 
|  | // Insert new strings in the hash table only if the match length | 
|  | // is not too large. This saves time but degrades compression. | 
|  | if (match_length <= config.MaxLazy && lookahead >= MIN_MATCH) | 
|  | { | 
|  | match_length--; // string at strstart already in hash table | 
|  | do | 
|  | { | 
|  | strstart++; | 
|  |  | 
|  | ins_h = ((ins_h << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask; | 
|  | //      prev[strstart&w_mask]=hash_head=head[ins_h]; | 
|  | hash_head = (head[ins_h] & 0xffff); | 
|  | prev[strstart & w_mask] = head[ins_h]; | 
|  | head[ins_h] = unchecked((short)strstart); | 
|  |  | 
|  | // strstart never exceeds WSIZE-MAX_MATCH, so there are | 
|  | // always MIN_MATCH bytes ahead. | 
|  | } | 
|  | while (--match_length != 0); | 
|  | strstart++; | 
|  | } | 
|  | else | 
|  | { | 
|  | strstart += match_length; | 
|  | match_length = 0; | 
|  | ins_h = window[strstart] & 0xff; | 
|  |  | 
|  | ins_h = (((ins_h) << hash_shift) ^ (window[strstart + 1] & 0xff)) & hash_mask; | 
|  | // If lookahead < MIN_MATCH, ins_h is garbage, but it does not | 
|  | // matter since it will be recomputed at next deflate call. | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | // No match, output a literal byte | 
|  |  | 
|  | bflush = _tr_tally(0, window[strstart] & 0xff); | 
|  | lookahead--; | 
|  | strstart++; | 
|  | } | 
|  | if (bflush) | 
|  | { | 
|  | flush_block_only(false); | 
|  | if (_codec.AvailableBytesOut == 0) | 
|  | return BlockState.NeedMore; | 
|  | } | 
|  | } | 
|  |  | 
|  | flush_block_only(flush == FlushType.Finish); | 
|  | if (_codec.AvailableBytesOut == 0) | 
|  | { | 
|  | if (flush == FlushType.Finish) | 
|  | return BlockState.FinishStarted; | 
|  | else | 
|  | return BlockState.NeedMore; | 
|  | } | 
|  | return flush == FlushType.Finish ? BlockState.FinishDone : BlockState.BlockDone; | 
|  | } | 
|  |  | 
|  | // Same as above, but achieves better compression. We use a lazy | 
|  | // evaluation for matches: a match is finally adopted only if there is | 
|  | // no better match at the next window position. | 
|  | internal BlockState DeflateSlow(FlushType flush) | 
|  | { | 
|  | //    short hash_head = 0;    // head of hash chain | 
|  | int hash_head = 0; // head of hash chain | 
|  | bool bflush; // set if current block must be flushed | 
|  |  | 
|  | // Process the input block. | 
|  | while (true) | 
|  | { | 
|  | // Make sure that we always have enough lookahead, except | 
|  | // at the end of the input file. We need MAX_MATCH bytes | 
|  | // for the next match, plus MIN_MATCH bytes to insert the | 
|  | // string following the next match. | 
|  |  | 
|  | if (lookahead < MIN_LOOKAHEAD) | 
|  | { | 
|  | _fillWindow(); | 
|  | if (lookahead < MIN_LOOKAHEAD && flush == FlushType.None) | 
|  | return BlockState.NeedMore; | 
|  |  | 
|  | if (lookahead == 0) | 
|  | break; // flush the current block | 
|  | } | 
|  |  | 
|  | // Insert the string window[strstart .. strstart+2] in the | 
|  | // dictionary, and set hash_head to the head of the hash chain: | 
|  |  | 
|  | if (lookahead >= MIN_MATCH) | 
|  | { | 
|  | ins_h = (((ins_h) << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask; | 
|  | //  prev[strstart&w_mask]=hash_head=head[ins_h]; | 
|  | hash_head = (head[ins_h] & 0xffff); | 
|  | prev[strstart & w_mask] = head[ins_h]; | 
|  | head[ins_h] = unchecked((short)strstart); | 
|  | } | 
|  |  | 
|  | // Find the longest match, discarding those <= prev_length. | 
|  | prev_length = match_length; | 
|  | prev_match = match_start; | 
|  | match_length = MIN_MATCH - 1; | 
|  |  | 
|  | if (hash_head != 0 && prev_length < config.MaxLazy && | 
|  | ((strstart - hash_head) & 0xffff) <= w_size - MIN_LOOKAHEAD) | 
|  | { | 
|  | // To simplify the code, we prevent matches with the string | 
|  | // of window index 0 (in particular we have to avoid a match | 
|  | // of the string with itself at the start of the input file). | 
|  |  | 
|  | if (compressionStrategy != CompressionStrategy.HuffmanOnly) | 
|  | { | 
|  | match_length = longest_match(hash_head); | 
|  | } | 
|  | // longest_match() sets match_start | 
|  |  | 
|  | if (match_length <= 5 && (compressionStrategy == CompressionStrategy.Filtered || | 
|  | (match_length == MIN_MATCH && strstart - match_start > 4096))) | 
|  | { | 
|  |  | 
|  | // If prev_match is also MIN_MATCH, match_start is garbage | 
|  | // but we will ignore the current match anyway. | 
|  | match_length = MIN_MATCH - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there was a match at the previous step and the current | 
|  | // match is not better, output the previous match: | 
|  | if (prev_length >= MIN_MATCH && match_length <= prev_length) | 
|  | { | 
|  | int max_insert = strstart + lookahead - MIN_MATCH; | 
|  | // Do not insert strings in hash table beyond this. | 
|  |  | 
|  | //          check_match(strstart-1, prev_match, prev_length); | 
|  |  | 
|  | bflush = _tr_tally(strstart - 1 - prev_match, prev_length - MIN_MATCH); | 
|  |  | 
|  | // Insert in hash table all strings up to the end of the match. | 
|  | // strstart-1 and strstart are already inserted. If there is not | 
|  | // enough lookahead, the last two strings are not inserted in | 
|  | // the hash table. | 
|  | lookahead -= (prev_length - 1); | 
|  | prev_length -= 2; | 
|  | do | 
|  | { | 
|  | if (++strstart <= max_insert) | 
|  | { | 
|  | ins_h = (((ins_h) << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask; | 
|  | //prev[strstart&w_mask]=hash_head=head[ins_h]; | 
|  | hash_head = (head[ins_h] & 0xffff); | 
|  | prev[strstart & w_mask] = head[ins_h]; | 
|  | head[ins_h] = unchecked((short)strstart); | 
|  | } | 
|  | } | 
|  | while (--prev_length != 0); | 
|  | match_available = 0; | 
|  | match_length = MIN_MATCH - 1; | 
|  | strstart++; | 
|  |  | 
|  | if (bflush) | 
|  | { | 
|  | flush_block_only(false); | 
|  | if (_codec.AvailableBytesOut == 0) | 
|  | return BlockState.NeedMore; | 
|  | } | 
|  | } | 
|  | else if (match_available != 0) | 
|  | { | 
|  |  | 
|  | // If there was no match at the previous position, output a | 
|  | // single literal. If there was a match but the current match | 
|  | // is longer, truncate the previous match to a single literal. | 
|  |  | 
|  | bflush = _tr_tally(0, window[strstart - 1] & 0xff); | 
|  |  | 
|  | if (bflush) | 
|  | { | 
|  | flush_block_only(false); | 
|  | } | 
|  | strstart++; | 
|  | lookahead--; | 
|  | if (_codec.AvailableBytesOut == 0) | 
|  | return BlockState.NeedMore; | 
|  | } | 
|  | else | 
|  | { | 
|  | // There is no previous match to compare with, wait for | 
|  | // the next step to decide. | 
|  |  | 
|  | match_available = 1; | 
|  | strstart++; | 
|  | lookahead--; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (match_available != 0) | 
|  | { | 
|  | bflush = _tr_tally(0, window[strstart - 1] & 0xff); | 
|  | match_available = 0; | 
|  | } | 
|  | flush_block_only(flush == FlushType.Finish); | 
|  |  | 
|  | if (_codec.AvailableBytesOut == 0) | 
|  | { | 
|  | if (flush == FlushType.Finish) | 
|  | return BlockState.FinishStarted; | 
|  | else | 
|  | return BlockState.NeedMore; | 
|  | } | 
|  |  | 
|  | return flush == FlushType.Finish ? BlockState.FinishDone : BlockState.BlockDone; | 
|  | } | 
|  |  | 
|  |  | 
|  | internal int longest_match(int cur_match) | 
|  | { | 
|  | int chain_length = config.MaxChainLength; // max hash chain length | 
|  | int scan         = strstart;              // current string | 
|  | int match;                                // matched string | 
|  | int len;                                  // length of current match | 
|  | int best_len     = prev_length;           // best match length so far | 
|  | int limit        = strstart > (w_size - MIN_LOOKAHEAD) ? strstart - (w_size - MIN_LOOKAHEAD) : 0; | 
|  |  | 
|  | int niceLength = config.NiceLength; | 
|  |  | 
|  | // Stop when cur_match becomes <= limit. To simplify the code, | 
|  | // we prevent matches with the string of window index 0. | 
|  |  | 
|  | int wmask = w_mask; | 
|  |  | 
|  | int strend = strstart + MAX_MATCH; | 
|  | byte scan_end1 = window[scan + best_len - 1]; | 
|  | byte scan_end = window[scan + best_len]; | 
|  |  | 
|  | // The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | 
|  | // It is easy to get rid of this optimization if necessary. | 
|  |  | 
|  | // Do not waste too much time if we already have a good match: | 
|  | if (prev_length >= config.GoodLength) | 
|  | { | 
|  | chain_length >>= 2; | 
|  | } | 
|  |  | 
|  | // Do not look for matches beyond the end of the input. This is necessary | 
|  | // to make deflate deterministic. | 
|  | if (niceLength > lookahead) | 
|  | niceLength = lookahead; | 
|  |  | 
|  | do | 
|  | { | 
|  | match = cur_match; | 
|  |  | 
|  | // Skip to next match if the match length cannot increase | 
|  | // or if the match length is less than 2: | 
|  | if (window[match + best_len] != scan_end || | 
|  | window[match + best_len - 1] != scan_end1 || | 
|  | window[match] != window[scan] || | 
|  | window[++match] != window[scan + 1]) | 
|  | continue; | 
|  |  | 
|  | // The check at best_len-1 can be removed because it will be made | 
|  | // again later. (This heuristic is not always a win.) | 
|  | // It is not necessary to compare scan[2] and match[2] since they | 
|  | // are always equal when the other bytes match, given that | 
|  | // the hash keys are equal and that HASH_BITS >= 8. | 
|  | scan += 2; match++; | 
|  |  | 
|  | // We check for insufficient lookahead only every 8th comparison; | 
|  | // the 256th check will be made at strstart+258. | 
|  | do | 
|  | { | 
|  | } | 
|  | while (window[++scan] == window[++match] && | 
|  | window[++scan] == window[++match] && | 
|  | window[++scan] == window[++match] && | 
|  | window[++scan] == window[++match] && | 
|  | window[++scan] == window[++match] && | 
|  | window[++scan] == window[++match] && | 
|  | window[++scan] == window[++match] && | 
|  | window[++scan] == window[++match] && scan < strend); | 
|  |  | 
|  | len = MAX_MATCH - (int)(strend - scan); | 
|  | scan = strend - MAX_MATCH; | 
|  |  | 
|  | if (len > best_len) | 
|  | { | 
|  | match_start = cur_match; | 
|  | best_len = len; | 
|  | if (len >= niceLength) | 
|  | break; | 
|  | scan_end1 = window[scan + best_len - 1]; | 
|  | scan_end = window[scan + best_len]; | 
|  | } | 
|  | } | 
|  | while ((cur_match = (prev[cur_match & wmask] & 0xffff)) > limit && --chain_length != 0); | 
|  |  | 
|  | if (best_len <= lookahead) | 
|  | return best_len; | 
|  | return lookahead; | 
|  | } | 
|  |  | 
|  |  | 
|  | private bool Rfc1950BytesEmitted = false; | 
|  | private bool _WantRfc1950HeaderBytes = true; | 
|  | internal bool WantRfc1950HeaderBytes | 
|  | { | 
|  | get { return _WantRfc1950HeaderBytes; } | 
|  | set { _WantRfc1950HeaderBytes = value; } | 
|  | } | 
|  |  | 
|  |  | 
|  | internal int Initialize(ZlibCodec codec, CompressionLevel level) | 
|  | { | 
|  | return Initialize(codec, level, ZlibConstants.WindowBitsMax); | 
|  | } | 
|  |  | 
|  | internal int Initialize(ZlibCodec codec, CompressionLevel level, int bits) | 
|  | { | 
|  | return Initialize(codec, level, bits, MEM_LEVEL_DEFAULT, CompressionStrategy.Default); | 
|  | } | 
|  |  | 
|  | internal int Initialize(ZlibCodec codec, CompressionLevel level, int bits, CompressionStrategy compressionStrategy) | 
|  | { | 
|  | return Initialize(codec, level, bits, MEM_LEVEL_DEFAULT, compressionStrategy); | 
|  | } | 
|  |  | 
|  | internal int Initialize(ZlibCodec codec, CompressionLevel level, int windowBits, int memLevel, CompressionStrategy strategy) | 
|  | { | 
|  | _codec = codec; | 
|  | _codec.Message = null; | 
|  |  | 
|  | // validation | 
|  | if (windowBits < 9 || windowBits > 15) | 
|  | throw new ZlibException("windowBits must be in the range 9..15."); | 
|  |  | 
|  | if (memLevel < 1 || memLevel > MEM_LEVEL_MAX) | 
|  | throw new ZlibException(String.Format("memLevel must be in the range 1.. {0}", MEM_LEVEL_MAX)); | 
|  |  | 
|  | _codec.dstate = this; | 
|  |  | 
|  | w_bits = windowBits; | 
|  | w_size = 1 << w_bits; | 
|  | w_mask = w_size - 1; | 
|  |  | 
|  | hash_bits = memLevel + 7; | 
|  | hash_size = 1 << hash_bits; | 
|  | hash_mask = hash_size - 1; | 
|  | hash_shift = ((hash_bits + MIN_MATCH - 1) / MIN_MATCH); | 
|  |  | 
|  | window = new byte[w_size * 2]; | 
|  | prev = new short[w_size]; | 
|  | head = new short[hash_size]; | 
|  |  | 
|  | // for memLevel==8, this will be 16384, 16k | 
|  | lit_bufsize = 1 << (memLevel + 6); | 
|  |  | 
|  | // Use a single array as the buffer for data pending compression, | 
|  | // the output distance codes, and the output length codes (aka tree). | 
|  | // orig comment: This works just fine since the average | 
|  | // output size for (length,distance) codes is <= 24 bits. | 
|  | pending = new byte[lit_bufsize * 4]; | 
|  | _distanceOffset = lit_bufsize; | 
|  | _lengthOffset = (1 + 2) * lit_bufsize; | 
|  |  | 
|  | // So, for memLevel 8, the length of the pending buffer is 65536. 64k. | 
|  | // The first 16k are pending bytes. | 
|  | // The middle slice, of 32k, is used for distance codes. | 
|  | // The final 16k are length codes. | 
|  |  | 
|  | this.compressionLevel = level; | 
|  | this.compressionStrategy = strategy; | 
|  |  | 
|  | Reset(); | 
|  | return ZlibConstants.Z_OK; | 
|  | } | 
|  |  | 
|  |  | 
|  | internal void Reset() | 
|  | { | 
|  | _codec.TotalBytesIn = _codec.TotalBytesOut = 0; | 
|  | _codec.Message = null; | 
|  | //strm.data_type = Z_UNKNOWN; | 
|  |  | 
|  | pendingCount = 0; | 
|  | nextPending = 0; | 
|  |  | 
|  | Rfc1950BytesEmitted = false; | 
|  |  | 
|  | status = (WantRfc1950HeaderBytes) ? INIT_STATE : BUSY_STATE; | 
|  | _codec._Adler32 = Adler.Adler32(0, null, 0, 0); | 
|  |  | 
|  | last_flush = (int)FlushType.None; | 
|  |  | 
|  | _InitializeTreeData(); | 
|  | _InitializeLazyMatch(); | 
|  | } | 
|  |  | 
|  |  | 
|  | internal int End() | 
|  | { | 
|  | if (status != INIT_STATE && status != BUSY_STATE && status != FINISH_STATE) | 
|  | { | 
|  | return ZlibConstants.Z_STREAM_ERROR; | 
|  | } | 
|  | // Deallocate in reverse order of allocations: | 
|  | pending = null; | 
|  | head = null; | 
|  | prev = null; | 
|  | window = null; | 
|  | // free | 
|  | // dstate=null; | 
|  | return status == BUSY_STATE ? ZlibConstants.Z_DATA_ERROR : ZlibConstants.Z_OK; | 
|  | } | 
|  |  | 
|  |  | 
|  | private void SetDeflater() | 
|  | { | 
|  | switch (config.Flavor) | 
|  | { | 
|  | case DeflateFlavor.Store: | 
|  | DeflateFunction = DeflateNone; | 
|  | break; | 
|  | case DeflateFlavor.Fast: | 
|  | DeflateFunction = DeflateFast; | 
|  | break; | 
|  | case DeflateFlavor.Slow: | 
|  | DeflateFunction = DeflateSlow; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | internal int SetParams(CompressionLevel level, CompressionStrategy strategy) | 
|  | { | 
|  | int result = ZlibConstants.Z_OK; | 
|  |  | 
|  | if (compressionLevel != level) | 
|  | { | 
|  | Config newConfig = Config.Lookup(level); | 
|  |  | 
|  | // change in the deflate flavor (Fast vs slow vs none)? | 
|  | if (newConfig.Flavor != config.Flavor && _codec.TotalBytesIn != 0) | 
|  | { | 
|  | // Flush the last buffer: | 
|  | result = _codec.Deflate(FlushType.Partial); | 
|  | } | 
|  |  | 
|  | compressionLevel = level; | 
|  | config = newConfig; | 
|  | SetDeflater(); | 
|  | } | 
|  |  | 
|  | // no need to flush with change in strategy?  Really? | 
|  | compressionStrategy = strategy; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | internal int SetDictionary(byte[] dictionary) | 
|  | { | 
|  | int length = dictionary.Length; | 
|  | int index = 0; | 
|  |  | 
|  | if (dictionary == null || status != INIT_STATE) | 
|  | throw new ZlibException("Stream error."); | 
|  |  | 
|  | _codec._Adler32 = Adler.Adler32(_codec._Adler32, dictionary, 0, dictionary.Length); | 
|  |  | 
|  | if (length < MIN_MATCH) | 
|  | return ZlibConstants.Z_OK; | 
|  | if (length > w_size - MIN_LOOKAHEAD) | 
|  | { | 
|  | length = w_size - MIN_LOOKAHEAD; | 
|  | index = dictionary.Length - length; // use the tail of the dictionary | 
|  | } | 
|  | Array.Copy(dictionary, index, window, 0, length); | 
|  | strstart = length; | 
|  | block_start = length; | 
|  |  | 
|  | // Insert all strings in the hash table (except for the last two bytes). | 
|  | // s->lookahead stays null, so s->ins_h will be recomputed at the next | 
|  | // call of fill_window. | 
|  |  | 
|  | ins_h = window[0] & 0xff; | 
|  | ins_h = (((ins_h) << hash_shift) ^ (window[1] & 0xff)) & hash_mask; | 
|  |  | 
|  | for (int n = 0; n <= length - MIN_MATCH; n++) | 
|  | { | 
|  | ins_h = (((ins_h) << hash_shift) ^ (window[(n) + (MIN_MATCH - 1)] & 0xff)) & hash_mask; | 
|  | prev[n & w_mask] = head[ins_h]; | 
|  | head[ins_h] = (short)n; | 
|  | } | 
|  | return ZlibConstants.Z_OK; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | internal int Deflate(FlushType flush) | 
|  | { | 
|  | int old_flush; | 
|  |  | 
|  | if (_codec.OutputBuffer == null || | 
|  | (_codec.InputBuffer == null && _codec.AvailableBytesIn != 0) || | 
|  | (status == FINISH_STATE && flush != FlushType.Finish)) | 
|  | { | 
|  | _codec.Message = _ErrorMessage[ZlibConstants.Z_NEED_DICT - (ZlibConstants.Z_STREAM_ERROR)]; | 
|  | throw new ZlibException(String.Format("Something is fishy. [{0}]", _codec.Message)); | 
|  | } | 
|  | if (_codec.AvailableBytesOut == 0) | 
|  | { | 
|  | _codec.Message = _ErrorMessage[ZlibConstants.Z_NEED_DICT - (ZlibConstants.Z_BUF_ERROR)]; | 
|  | throw new ZlibException("OutputBuffer is full (AvailableBytesOut == 0)"); | 
|  | } | 
|  |  | 
|  | old_flush = last_flush; | 
|  | last_flush = (int)flush; | 
|  |  | 
|  | // Write the zlib (rfc1950) header bytes | 
|  | if (status == INIT_STATE) | 
|  | { | 
|  | int header = (Z_DEFLATED + ((w_bits - 8) << 4)) << 8; | 
|  | int level_flags = (((int)compressionLevel - 1) & 0xff) >> 1; | 
|  |  | 
|  | if (level_flags > 3) | 
|  | level_flags = 3; | 
|  | header |= (level_flags << 6); | 
|  | if (strstart != 0) | 
|  | header |= PRESET_DICT; | 
|  | header += 31 - (header % 31); | 
|  |  | 
|  | status = BUSY_STATE; | 
|  | //putShortMSB(header); | 
|  | unchecked | 
|  | { | 
|  | pending[pendingCount++] = (byte)(header >> 8); | 
|  | pending[pendingCount++] = (byte)header; | 
|  | } | 
|  | // Save the adler32 of the preset dictionary: | 
|  | if (strstart != 0) | 
|  | { | 
|  | pending[pendingCount++] = (byte)((_codec._Adler32 & 0xFF000000) >> 24); | 
|  | pending[pendingCount++] = (byte)((_codec._Adler32 & 0x00FF0000) >> 16); | 
|  | pending[pendingCount++] = (byte)((_codec._Adler32 & 0x0000FF00) >> 8); | 
|  | pending[pendingCount++] = (byte)(_codec._Adler32 & 0x000000FF); | 
|  | } | 
|  | _codec._Adler32 = Adler.Adler32(0, null, 0, 0); | 
|  | } | 
|  |  | 
|  | // Flush as much pending output as possible | 
|  | if (pendingCount != 0) | 
|  | { | 
|  | _codec.flush_pending(); | 
|  | if (_codec.AvailableBytesOut == 0) | 
|  | { | 
|  | //System.out.println("  avail_out==0"); | 
|  | // Since avail_out is 0, deflate will be called again with | 
|  | // more output space, but possibly with both pending and | 
|  | // avail_in equal to zero. There won't be anything to do, | 
|  | // but this is not an error situation so make sure we | 
|  | // return OK instead of BUF_ERROR at next call of deflate: | 
|  | last_flush = -1; | 
|  | return ZlibConstants.Z_OK; | 
|  | } | 
|  |  | 
|  | // Make sure there is something to do and avoid duplicate consecutive | 
|  | // flushes. For repeated and useless calls with Z_FINISH, we keep | 
|  | // returning Z_STREAM_END instead of Z_BUFF_ERROR. | 
|  | } | 
|  | else if (_codec.AvailableBytesIn == 0 && | 
|  | (int)flush <= old_flush && | 
|  | flush != FlushType.Finish) | 
|  | { | 
|  | // workitem 8557 | 
|  | // | 
|  | // Not sure why this needs to be an error.  pendingCount == 0, which | 
|  | // means there's nothing to deflate.  And the caller has not asked | 
|  | // for a FlushType.Finish, but...  that seems very non-fatal.  We | 
|  | // can just say "OK" and do nothing. | 
|  |  | 
|  | // _codec.Message = z_errmsg[ZlibConstants.Z_NEED_DICT - (ZlibConstants.Z_BUF_ERROR)]; | 
|  | // throw new ZlibException("AvailableBytesIn == 0 && flush<=old_flush && flush != FlushType.Finish"); | 
|  |  | 
|  | return ZlibConstants.Z_OK; | 
|  | } | 
|  |  | 
|  | // User must not provide more input after the first FINISH: | 
|  | if (status == FINISH_STATE && _codec.AvailableBytesIn != 0) | 
|  | { | 
|  | _codec.Message = _ErrorMessage[ZlibConstants.Z_NEED_DICT - (ZlibConstants.Z_BUF_ERROR)]; | 
|  | throw new ZlibException("status == FINISH_STATE && _codec.AvailableBytesIn != 0"); | 
|  | } | 
|  |  | 
|  | // Start a new block or continue the current one. | 
|  | if (_codec.AvailableBytesIn != 0 || lookahead != 0 || (flush != FlushType.None && status != FINISH_STATE)) | 
|  | { | 
|  | BlockState bstate = DeflateFunction(flush); | 
|  |  | 
|  | if (bstate == BlockState.FinishStarted || bstate == BlockState.FinishDone) | 
|  | { | 
|  | status = FINISH_STATE; | 
|  | } | 
|  | if (bstate == BlockState.NeedMore || bstate == BlockState.FinishStarted) | 
|  | { | 
|  | if (_codec.AvailableBytesOut == 0) | 
|  | { | 
|  | last_flush = -1; // avoid BUF_ERROR next call, see above | 
|  | } | 
|  | return ZlibConstants.Z_OK; | 
|  | // If flush != Z_NO_FLUSH && avail_out == 0, the next call | 
|  | // of deflate should use the same flush parameter to make sure | 
|  | // that the flush is complete. So we don't have to output an | 
|  | // empty block here, this will be done at next call. This also | 
|  | // ensures that for a very small output buffer, we emit at most | 
|  | // one empty block. | 
|  | } | 
|  |  | 
|  | if (bstate == BlockState.BlockDone) | 
|  | { | 
|  | if (flush == FlushType.Partial) | 
|  | { | 
|  | _tr_align(); | 
|  | } | 
|  | else | 
|  | { | 
|  | // FlushType.Full or FlushType.Sync | 
|  | _tr_stored_block(0, 0, false); | 
|  | // For a full flush, this empty block will be recognized | 
|  | // as a special marker by inflate_sync(). | 
|  | if (flush == FlushType.Full) | 
|  | { | 
|  | // clear hash (forget the history) | 
|  | for (int i = 0; i < hash_size; i++) | 
|  | head[i] = 0; | 
|  | } | 
|  | } | 
|  | _codec.flush_pending(); | 
|  | if (_codec.AvailableBytesOut == 0) | 
|  | { | 
|  | last_flush = -1; // avoid BUF_ERROR at next call, see above | 
|  | return ZlibConstants.Z_OK; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (flush != FlushType.Finish) | 
|  | return ZlibConstants.Z_OK; | 
|  |  | 
|  | if (!WantRfc1950HeaderBytes || Rfc1950BytesEmitted) | 
|  | return ZlibConstants.Z_STREAM_END; | 
|  |  | 
|  | // Write the zlib trailer (adler32) | 
|  | pending[pendingCount++] = (byte)((_codec._Adler32 & 0xFF000000) >> 24); | 
|  | pending[pendingCount++] = (byte)((_codec._Adler32 & 0x00FF0000) >> 16); | 
|  | pending[pendingCount++] = (byte)((_codec._Adler32 & 0x0000FF00) >> 8); | 
|  | pending[pendingCount++] = (byte)(_codec._Adler32 & 0x000000FF); | 
|  | //putShortMSB((int)(SharedUtils.URShift(_codec._Adler32, 16))); | 
|  | //putShortMSB((int)(_codec._Adler32 & 0xffff)); | 
|  |  | 
|  | _codec.flush_pending(); | 
|  |  | 
|  | // If avail_out is zero, the application will call deflate again | 
|  | // to flush the rest. | 
|  |  | 
|  | Rfc1950BytesEmitted = true; // write the trailer only once! | 
|  |  | 
|  | return pendingCount != 0 ? ZlibConstants.Z_OK : ZlibConstants.Z_STREAM_END; | 
|  | } | 
|  |  | 
|  | } | 
|  | } |