|  | /* | 
|  | * Licensed to the Apache Software Foundation (ASF) under one | 
|  | * or more contributor license agreements.  See the NOTICE file | 
|  | * distributed with this work for additional information | 
|  | * regarding copyright ownership.  The ASF licenses this file | 
|  | * to you under the Apache License, Version 2.0 (the | 
|  | * "License"); you may not use this file except in compliance | 
|  | * with the License.  You may obtain a copy of the License at | 
|  | * | 
|  | *   http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, | 
|  | * software distributed under the License is distributed on an | 
|  | * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | 
|  | * KIND, either express or implied.  See the License for the | 
|  | * specific language governing permissions and limitations | 
|  | * under the License. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * A third-party license is embedded for some of the code in this file: | 
|  | * The method "quantile" was copied from "d3.js". | 
|  | * (See more details in the comment of the method below.) | 
|  | * The use of the source code of this file is also subject to the terms | 
|  | * and consitions of the license of "d3.js" (BSD-3Clause, see | 
|  | * </licenses/LICENSE-d3>). | 
|  | */ | 
|  |  | 
|  | import * as zrUtil from 'zrender/src/core/util'; | 
|  |  | 
|  | const RADIAN_EPSILON = 1e-4; | 
|  | // Although chrome already enlarge this number to 100 for `toFixed`, but | 
|  | // we sill follow the spec for compatibility. | 
|  | const ROUND_SUPPORTED_PRECISION_MAX = 20; | 
|  |  | 
|  | function _trim(str: string): string { | 
|  | return str.replace(/^\s+|\s+$/g, ''); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Linear mapping a value from domain to range | 
|  | * @param  val | 
|  | * @param  domain Domain extent domain[0] can be bigger than domain[1] | 
|  | * @param  range  Range extent range[0] can be bigger than range[1] | 
|  | * @param  clamp Default to be false | 
|  | */ | 
|  | export function linearMap( | 
|  | val: number, | 
|  | domain: number[], | 
|  | range: number[], | 
|  | clamp?: boolean | 
|  | ): number { | 
|  | const d0 = domain[0]; | 
|  | const d1 = domain[1]; | 
|  | const r0 = range[0]; | 
|  | const r1 = range[1]; | 
|  |  | 
|  | const subDomain = d1 - d0; | 
|  | const subRange = r1 - r0; | 
|  |  | 
|  | if (subDomain === 0) { | 
|  | return subRange === 0 | 
|  | ? r0 | 
|  | : (r0 + r1) / 2; | 
|  | } | 
|  |  | 
|  | // Avoid accuracy problem in edge, such as | 
|  | // 146.39 - 62.83 === 83.55999999999999. | 
|  | // See echarts/test/ut/spec/util/number.js#linearMap#accuracyError | 
|  | // It is a little verbose for efficiency considering this method | 
|  | // is a hotspot. | 
|  | if (clamp) { | 
|  | if (subDomain > 0) { | 
|  | if (val <= d0) { | 
|  | return r0; | 
|  | } | 
|  | else if (val >= d1) { | 
|  | return r1; | 
|  | } | 
|  | } | 
|  | else { | 
|  | if (val >= d0) { | 
|  | return r0; | 
|  | } | 
|  | else if (val <= d1) { | 
|  | return r1; | 
|  | } | 
|  | } | 
|  | } | 
|  | else { | 
|  | if (val === d0) { | 
|  | return r0; | 
|  | } | 
|  | if (val === d1) { | 
|  | return r1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return (val - d0) / subDomain * subRange + r0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Convert a percent string to absolute number. | 
|  | * Returns NaN if percent is not a valid string or number | 
|  | */ | 
|  | export function parsePercent(percent: number | string, all: number): number { | 
|  | switch (percent) { | 
|  | case 'center': | 
|  | case 'middle': | 
|  | percent = '50%'; | 
|  | break; | 
|  | case 'left': | 
|  | case 'top': | 
|  | percent = '0%'; | 
|  | break; | 
|  | case 'right': | 
|  | case 'bottom': | 
|  | percent = '100%'; | 
|  | break; | 
|  | } | 
|  | if (zrUtil.isString(percent)) { | 
|  | if (_trim(percent).match(/%$/)) { | 
|  | return parseFloat(percent) / 100 * all; | 
|  | } | 
|  |  | 
|  | return parseFloat(percent); | 
|  | } | 
|  |  | 
|  | return percent == null ? NaN : +percent; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * (1) Fix rounding error of float numbers. | 
|  | * (2) Support return string to avoid scientific notation like '3.5e-7'. | 
|  | */ | 
|  | export function round(x: number | string, precision?: number): number; | 
|  | export function round(x: number | string, precision: number, returnStr: false): number; | 
|  | export function round(x: number | string, precision: number, returnStr: true): string; | 
|  | export function round(x: number | string, precision?: number, returnStr?: boolean): string | number { | 
|  | if (precision == null) { | 
|  | precision = 10; | 
|  | } | 
|  | // Avoid range error | 
|  | precision = Math.min(Math.max(0, precision), ROUND_SUPPORTED_PRECISION_MAX); | 
|  | // PENDING: 1.005.toFixed(2) is '1.00' rather than '1.01' | 
|  | x = (+x).toFixed(precision); | 
|  | return (returnStr ? x : +x); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Inplacd asc sort arr. | 
|  | * The input arr will be modified. | 
|  | */ | 
|  | export function asc<T extends number[]>(arr: T): T { | 
|  | arr.sort(function (a, b) { | 
|  | return a - b; | 
|  | }); | 
|  | return arr; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Get precision. | 
|  | */ | 
|  | export function getPrecision(val: string | number): number { | 
|  | val = +val; | 
|  | if (isNaN(val)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // It is much faster than methods converting number to string as follows | 
|  | //      let tmp = val.toString(); | 
|  | //      return tmp.length - 1 - tmp.indexOf('.'); | 
|  | // especially when precision is low | 
|  | // Notice: | 
|  | // (1) If the loop count is over about 20, it is slower than `getPrecisionSafe`. | 
|  | //     (see https://jsbench.me/2vkpcekkvw/1) | 
|  | // (2) If the val is less than for example 1e-15, the result may be incorrect. | 
|  | //     (see test/ut/spec/util/number.test.ts `getPrecision_equal_random`) | 
|  | if (val > 1e-14) { | 
|  | let e = 1; | 
|  | for (let i = 0; i < 15; i++, e *= 10) { | 
|  | if (Math.round(val * e) / e === val) { | 
|  | return i; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return getPrecisionSafe(val); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Get precision with slow but safe method | 
|  | */ | 
|  | export function getPrecisionSafe(val: string | number): number { | 
|  | // toLowerCase for: '3.4E-12' | 
|  | const str = val.toString().toLowerCase(); | 
|  |  | 
|  | // Consider scientific notation: '3.4e-12' '3.4e+12' | 
|  | const eIndex = str.indexOf('e'); | 
|  | const exp = eIndex > 0 ? +str.slice(eIndex + 1) : 0; | 
|  | const significandPartLen = eIndex > 0 ? eIndex : str.length; | 
|  | const dotIndex = str.indexOf('.'); | 
|  | const decimalPartLen = dotIndex < 0 ? 0 : significandPartLen - 1 - dotIndex; | 
|  | return Math.max(0, decimalPartLen - exp); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Minimal dicernible data precisioin according to a single pixel. | 
|  | */ | 
|  | export function getPixelPrecision(dataExtent: [number, number], pixelExtent: [number, number]): number { | 
|  | const log = Math.log; | 
|  | const LN10 = Math.LN10; | 
|  | const dataQuantity = Math.floor(log(dataExtent[1] - dataExtent[0]) / LN10); | 
|  | const sizeQuantity = Math.round(log(Math.abs(pixelExtent[1] - pixelExtent[0])) / LN10); | 
|  | // toFixed() digits argument must be between 0 and 20. | 
|  | const precision = Math.min(Math.max(-dataQuantity + sizeQuantity, 0), 20); | 
|  | return !isFinite(precision) ? 20 : precision; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Get a data of given precision, assuring the sum of percentages | 
|  | * in valueList is 1. | 
|  | * The largest remainder method is used. | 
|  | * https://en.wikipedia.org/wiki/Largest_remainder_method | 
|  | * | 
|  | * @param valueList a list of all data | 
|  | * @param idx index of the data to be processed in valueList | 
|  | * @param precision integer number showing digits of precision | 
|  | * @return percent ranging from 0 to 100 | 
|  | */ | 
|  | export function getPercentWithPrecision(valueList: number[], idx: number, precision: number): number { | 
|  | if (!valueList[idx]) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const seats = getPercentSeats(valueList, precision); | 
|  |  | 
|  | return seats[idx] || 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Get a data of given precision, assuring the sum of percentages | 
|  | * in valueList is 1. | 
|  | * The largest remainder method is used. | 
|  | * https://en.wikipedia.org/wiki/Largest_remainder_method | 
|  | * | 
|  | * @param valueList a list of all data | 
|  | * @param precision integer number showing digits of precision | 
|  | * @return {Array<number>} | 
|  | */ | 
|  | export function getPercentSeats(valueList: number[], precision: number): number[] { | 
|  | const sum = zrUtil.reduce(valueList, function (acc, val) { | 
|  | return acc + (isNaN(val) ? 0 : val); | 
|  | }, 0); | 
|  | if (sum === 0) { | 
|  | return []; | 
|  | } | 
|  |  | 
|  | const digits = Math.pow(10, precision); | 
|  | const votesPerQuota = zrUtil.map(valueList, function (val) { | 
|  | return (isNaN(val) ? 0 : val) / sum * digits * 100; | 
|  | }); | 
|  | const targetSeats = digits * 100; | 
|  |  | 
|  | const seats = zrUtil.map(votesPerQuota, function (votes) { | 
|  | // Assign automatic seats. | 
|  | return Math.floor(votes); | 
|  | }); | 
|  | let currentSum = zrUtil.reduce(seats, function (acc, val) { | 
|  | return acc + val; | 
|  | }, 0); | 
|  |  | 
|  | const remainder = zrUtil.map(votesPerQuota, function (votes, idx) { | 
|  | return votes - seats[idx]; | 
|  | }); | 
|  |  | 
|  | // Has remainding votes. | 
|  | while (currentSum < targetSeats) { | 
|  | // Find next largest remainder. | 
|  | let max = Number.NEGATIVE_INFINITY; | 
|  | let maxId = null; | 
|  | for (let i = 0, len = remainder.length; i < len; ++i) { | 
|  | if (remainder[i] > max) { | 
|  | max = remainder[i]; | 
|  | maxId = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add a vote to max remainder. | 
|  | ++seats[maxId]; | 
|  | remainder[maxId] = 0; | 
|  | ++currentSum; | 
|  | } | 
|  | return zrUtil.map(seats, function (seat) { | 
|  | return seat / digits; | 
|  | }); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Solve the floating point adding problem like 0.1 + 0.2 === 0.30000000000000004 | 
|  | * See <http://0.30000000000000004.com/> | 
|  | */ | 
|  | export function addSafe(val0: number, val1: number): number { | 
|  | const maxPrecision = Math.max(getPrecision(val0), getPrecision(val1)); | 
|  | // const multiplier = Math.pow(10, maxPrecision); | 
|  | // return (Math.round(val0 * multiplier) + Math.round(val1 * multiplier)) / multiplier; | 
|  | const sum = val0 + val1; | 
|  | // // PENDING: support more? | 
|  | return maxPrecision > ROUND_SUPPORTED_PRECISION_MAX | 
|  | ? sum : round(sum, maxPrecision); | 
|  | } | 
|  |  | 
|  | // Number.MAX_SAFE_INTEGER, ie do not support. | 
|  | export const MAX_SAFE_INTEGER = 9007199254740991; | 
|  |  | 
|  | /** | 
|  | * To 0 - 2 * PI, considering negative radian. | 
|  | */ | 
|  | export function remRadian(radian: number): number { | 
|  | const pi2 = Math.PI * 2; | 
|  | return (radian % pi2 + pi2) % pi2; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @param {type} radian | 
|  | * @return {boolean} | 
|  | */ | 
|  | export function isRadianAroundZero(val: number): boolean { | 
|  | return val > -RADIAN_EPSILON && val < RADIAN_EPSILON; | 
|  | } | 
|  |  | 
|  | // eslint-disable-next-line | 
|  | const TIME_REG = /^(?:(\d{4})(?:[-\/](\d{1,2})(?:[-\/](\d{1,2})(?:[T ](\d{1,2})(?::(\d{1,2})(?::(\d{1,2})(?:[.,](\d+))?)?)?(Z|[\+\-]\d\d:?\d\d)?)?)?)?)?$/; // jshint ignore:line | 
|  |  | 
|  | /** | 
|  | * @param value valid type: number | string | Date, otherwise return `new Date(NaN)` | 
|  | *   These values can be accepted: | 
|  | *   + An instance of Date, represent a time in its own time zone. | 
|  | *   + Or string in a subset of ISO 8601, only including: | 
|  | *     + only year, month, date: '2012-03', '2012-03-01', '2012-03-01 05', '2012-03-01 05:06', | 
|  | *     + separated with T or space: '2012-03-01T12:22:33.123', '2012-03-01 12:22:33.123', | 
|  | *     + time zone: '2012-03-01T12:22:33Z', '2012-03-01T12:22:33+8000', '2012-03-01T12:22:33-05:00', | 
|  | *     all of which will be treated as local time if time zone is not specified | 
|  | *     (see <https://momentjs.com/>). | 
|  | *   + Or other string format, including (all of which will be treated as local time): | 
|  | *     '2012', '2012-3-1', '2012/3/1', '2012/03/01', | 
|  | *     '2009/6/12 2:00', '2009/6/12 2:05:08', '2009/6/12 2:05:08.123' | 
|  | *   + a timestamp, which represent a time in UTC. | 
|  | * @return date Never be null/undefined. If invalid, return `new Date(NaN)`. | 
|  | */ | 
|  | export function parseDate(value: unknown): Date { | 
|  | if (value instanceof Date) { | 
|  | return value; | 
|  | } | 
|  | else if (zrUtil.isString(value)) { | 
|  | // Different browsers parse date in different way, so we parse it manually. | 
|  | // Some other issues: | 
|  | // new Date('1970-01-01') is UTC, | 
|  | // new Date('1970/01/01') and new Date('1970-1-01') is local. | 
|  | // See issue #3623 | 
|  | const match = TIME_REG.exec(value); | 
|  |  | 
|  | if (!match) { | 
|  | // return Invalid Date. | 
|  | return new Date(NaN); | 
|  | } | 
|  |  | 
|  | // Use local time when no timezone offset is specified. | 
|  | if (!match[8]) { | 
|  | // match[n] can only be string or undefined. | 
|  | // But take care of '12' + 1 => '121'. | 
|  | return new Date( | 
|  | +match[1], | 
|  | +(match[2] || 1) - 1, | 
|  | +match[3] || 1, | 
|  | +match[4] || 0, | 
|  | +(match[5] || 0), | 
|  | +match[6] || 0, | 
|  | match[7] ? +match[7].substring(0, 3) : 0 | 
|  | ); | 
|  | } | 
|  | // Timezoneoffset of Javascript Date has considered DST (Daylight Saving Time, | 
|  | // https://tc39.github.io/ecma262/#sec-daylight-saving-time-adjustment). | 
|  | // For example, system timezone is set as "Time Zone: America/Toronto", | 
|  | // then these code will get different result: | 
|  | // `new Date(1478411999999).getTimezoneOffset();  // get 240` | 
|  | // `new Date(1478412000000).getTimezoneOffset();  // get 300` | 
|  | // So we should not use `new Date`, but use `Date.UTC`. | 
|  | else { | 
|  | let hour = +match[4] || 0; | 
|  | if (match[8].toUpperCase() !== 'Z') { | 
|  | hour -= +match[8].slice(0, 3); | 
|  | } | 
|  | return new Date(Date.UTC( | 
|  | +match[1], | 
|  | +(match[2] || 1) - 1, | 
|  | +match[3] || 1, | 
|  | hour, | 
|  | +(match[5] || 0), | 
|  | +match[6] || 0, | 
|  | match[7] ? +match[7].substring(0, 3) : 0 | 
|  | )); | 
|  | } | 
|  | } | 
|  | else if (value == null) { | 
|  | return new Date(NaN); | 
|  | } | 
|  |  | 
|  | return new Date(Math.round(value as number)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Quantity of a number. e.g. 0.1, 1, 10, 100 | 
|  | * | 
|  | * @param val | 
|  | * @return | 
|  | */ | 
|  | export function quantity(val: number): number { | 
|  | return Math.pow(10, quantityExponent(val)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Exponent of the quantity of a number | 
|  | * e.g., 1234 equals to 1.234*10^3, so quantityExponent(1234) is 3 | 
|  | * | 
|  | * @param val non-negative value | 
|  | * @return | 
|  | */ | 
|  | export function quantityExponent(val: number): number { | 
|  | if (val === 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | let exp = Math.floor(Math.log(val) / Math.LN10); | 
|  | /** | 
|  | * exp is expected to be the rounded-down result of the base-10 log of val. | 
|  | * But due to the precision loss with Math.log(val), we need to restore it | 
|  | * using 10^exp to make sure we can get val back from exp. #11249 | 
|  | */ | 
|  | if (val / Math.pow(10, exp) >= 10) { | 
|  | exp++; | 
|  | } | 
|  | return exp; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find a “nice” number approximately equal to x. Round the number if round = true, | 
|  | * take ceiling if round = false. The primary observation is that the “nicest” | 
|  | * numbers in decimal are 1, 2, and 5, and all power-of-ten multiples of these numbers. | 
|  | * | 
|  | * See "Nice Numbers for Graph Labels" of Graphic Gems. | 
|  | * | 
|  | * @param  val Non-negative value. | 
|  | * @param  round | 
|  | * @return Niced number | 
|  | */ | 
|  | export function nice(val: number, round?: boolean): number { | 
|  | const exponent = quantityExponent(val); | 
|  | const exp10 = Math.pow(10, exponent); | 
|  | const f = val / exp10; // 1 <= f < 10 | 
|  | let nf; | 
|  | if (round) { | 
|  | if (f < 1.5) { | 
|  | nf = 1; | 
|  | } | 
|  | else if (f < 2.5) { | 
|  | nf = 2; | 
|  | } | 
|  | else if (f < 4) { | 
|  | nf = 3; | 
|  | } | 
|  | else if (f < 7) { | 
|  | nf = 5; | 
|  | } | 
|  | else { | 
|  | nf = 10; | 
|  | } | 
|  | } | 
|  | else { | 
|  | if (f < 1) { | 
|  | nf = 1; | 
|  | } | 
|  | else if (f < 2) { | 
|  | nf = 2; | 
|  | } | 
|  | else if (f < 3) { | 
|  | nf = 3; | 
|  | } | 
|  | else if (f < 5) { | 
|  | nf = 5; | 
|  | } | 
|  | else { | 
|  | nf = 10; | 
|  | } | 
|  | } | 
|  | val = nf * exp10; | 
|  |  | 
|  | // Fix 3 * 0.1 === 0.30000000000000004 issue (see IEEE 754). | 
|  | // 20 is the uppper bound of toFixed. | 
|  | return exponent >= -20 ? +val.toFixed(exponent < 0 ? -exponent : 0) : val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * This code was copied from "d3.js" | 
|  | * <https://github.com/d3/d3/blob/9cc9a875e636a1dcf36cc1e07bdf77e1ad6e2c74/src/arrays/quantile.js>. | 
|  | * See the license statement at the head of this file. | 
|  | * @param ascArr | 
|  | */ | 
|  | export function quantile(ascArr: number[], p: number): number { | 
|  | const H = (ascArr.length - 1) * p + 1; | 
|  | const h = Math.floor(H); | 
|  | const v = +ascArr[h - 1]; | 
|  | const e = H - h; | 
|  | return e ? v + e * (ascArr[h] - v) : v; | 
|  | } | 
|  |  | 
|  | type IntervalItem = { | 
|  | interval: [number, number] | 
|  | close: [0 | 1, 0 | 1] | 
|  | }; | 
|  | /** | 
|  | * Order intervals asc, and split them when overlap. | 
|  | * expect(numberUtil.reformIntervals([ | 
|  | *     {interval: [18, 62], close: [1, 1]}, | 
|  | *     {interval: [-Infinity, -70], close: [0, 0]}, | 
|  | *     {interval: [-70, -26], close: [1, 1]}, | 
|  | *     {interval: [-26, 18], close: [1, 1]}, | 
|  | *     {interval: [62, 150], close: [1, 1]}, | 
|  | *     {interval: [106, 150], close: [1, 1]}, | 
|  | *     {interval: [150, Infinity], close: [0, 0]} | 
|  | * ])).toEqual([ | 
|  | *     {interval: [-Infinity, -70], close: [0, 0]}, | 
|  | *     {interval: [-70, -26], close: [1, 1]}, | 
|  | *     {interval: [-26, 18], close: [0, 1]}, | 
|  | *     {interval: [18, 62], close: [0, 1]}, | 
|  | *     {interval: [62, 150], close: [0, 1]}, | 
|  | *     {interval: [150, Infinity], close: [0, 0]} | 
|  | * ]); | 
|  | * @param list, where `close` mean open or close | 
|  | *        of the interval, and Infinity can be used. | 
|  | * @return The origin list, which has been reformed. | 
|  | */ | 
|  | export function reformIntervals(list: IntervalItem[]): IntervalItem[] { | 
|  | list.sort(function (a, b) { | 
|  | return littleThan(a, b, 0) ? -1 : 1; | 
|  | }); | 
|  |  | 
|  | let curr = -Infinity; | 
|  | let currClose = 1; | 
|  | for (let i = 0; i < list.length;) { | 
|  | const interval = list[i].interval; | 
|  | const close = list[i].close; | 
|  |  | 
|  | for (let lg = 0; lg < 2; lg++) { | 
|  | if (interval[lg] <= curr) { | 
|  | interval[lg] = curr; | 
|  | close[lg] = (!lg ? 1 - currClose : 1) as 0 | 1; | 
|  | } | 
|  | curr = interval[lg]; | 
|  | currClose = close[lg]; | 
|  | } | 
|  |  | 
|  | if (interval[0] === interval[1] && close[0] * close[1] !== 1) { | 
|  | list.splice(i, 1); | 
|  | } | 
|  | else { | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return list; | 
|  |  | 
|  | function littleThan(a: IntervalItem, b: IntervalItem, lg: number): boolean { | 
|  | return a.interval[lg] < b.interval[lg] | 
|  | || ( | 
|  | a.interval[lg] === b.interval[lg] | 
|  | && ( | 
|  | (a.close[lg] - b.close[lg] === (!lg ? 1 : -1)) | 
|  | || (!lg && littleThan(a, b, 1)) | 
|  | ) | 
|  | ); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * [Numeric is defined as]: | 
|  | *     `parseFloat(val) == val` | 
|  | * For example: | 
|  | * numeric: | 
|  | *     typeof number except NaN, '-123', '123', '2e3', '-2e3', '011', 'Infinity', Infinity, | 
|  | *     and they rounded by white-spaces or line-terminal like ' -123 \n ' (see es spec) | 
|  | * not-numeric: | 
|  | *     null, undefined, [], {}, true, false, 'NaN', NaN, '123ab', | 
|  | *     empty string, string with only white-spaces or line-terminal (see es spec), | 
|  | *     0x12, '0x12', '-0x12', 012, '012', '-012', | 
|  | *     non-string, ... | 
|  | * | 
|  | * @test See full test cases in `test/ut/spec/util/number.js`. | 
|  | * @return Must be a typeof number. If not numeric, return NaN. | 
|  | */ | 
|  | export function numericToNumber(val: unknown): number { | 
|  | const valFloat = parseFloat(val as string); | 
|  | return ( | 
|  | valFloat == val // eslint-disable-line eqeqeq | 
|  | && (valFloat !== 0 || !zrUtil.isString(val) || val.indexOf('x') <= 0) // For case ' 0x0 '. | 
|  | ) ? valFloat : NaN; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Definition of "numeric": see `numericToNumber`. | 
|  | */ | 
|  | export function isNumeric(val: unknown): val is number { | 
|  | return !isNaN(numericToNumber(val)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Use random base to prevent users hard code depending on | 
|  | * this auto generated marker id. | 
|  | * @return An positive integer. | 
|  | */ | 
|  | export function getRandomIdBase(): number { | 
|  | return Math.round(Math.random() * 9); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Get the greatest common divisor. | 
|  | * | 
|  | * @param {number} a one number | 
|  | * @param {number} b the other number | 
|  | */ | 
|  | export function getGreatestCommonDividor(a: number, b: number): number { | 
|  | if (b === 0) { | 
|  | return a; | 
|  | } | 
|  | return getGreatestCommonDividor(b, a % b); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Get the least common multiple. | 
|  | * | 
|  | * @param {number} a one number | 
|  | * @param {number} b the other number | 
|  | */ | 
|  | export function getLeastCommonMultiple(a: number, b: number) { | 
|  | if (a == null) { | 
|  | return b; | 
|  | } | 
|  | if (b == null) { | 
|  | return a; | 
|  | } | 
|  | return a * b / getGreatestCommonDividor(a, b); | 
|  | } |